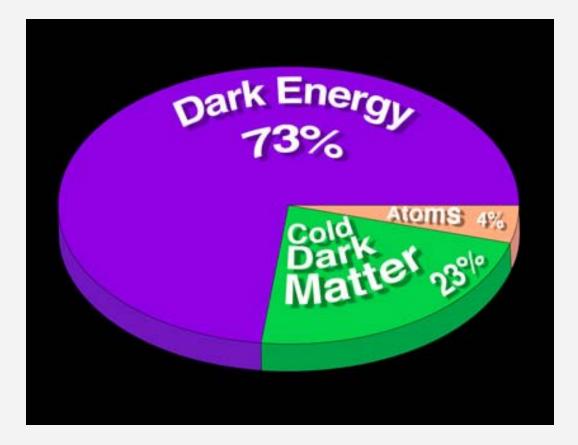
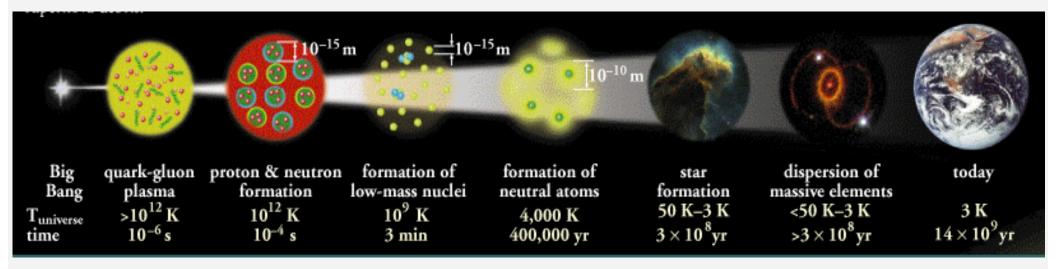
Mass Generation+Melting with the Strong Force Or: Why the Vacuum is not Empty


Ralf Rapp

Cyclotron Institute + Dept. of Physics & Astron. Texas A&M University College Station, USA


Cyclotron REU Program 2012 Texas A&M University, College Station, 01.08.12

The Cosmic Pie of Matter and Energy

- Expanding Universe
 ↔ Dark Energy
 not at all understood!
- Star / Galaxy Motion
 ↔ Dark Matter
 - **New Particles?**
- Mass of Visible Matter
 - ↔ Weight / Inertia A Dense Vacuum?

Nuclear Physics and the Universe

- Quark-Gluon Plasma: T > 200 MeV (<0.000001 sec.)</p>
- Phase transition to Hadronic Matter (Mass Generation, Quark Confinement), T ≈ 170 MeV (0.00001 sec.)
- Low-mass nuclei: H (p), d (pn), ³He, ⁴He, ⁷Li (3 min.)
- Heavy elements in star collapses: Supernovae (today)
- Exotic forms of (quark) matter in Neutron Stars (today)

Outline

1.) The Atom and the Micro-Cosmos

- Which Particles are Elementary?
- What is the World Made of?

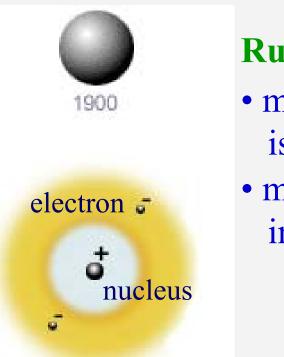
2.) <u>Elementary Particles and Their Interactions</u>

- "Matter Particles" vs. "Force Carriers"
- Fermions vs. Bosons

3.) <u>The Strong Interaction: Quarks and Gluons</u>

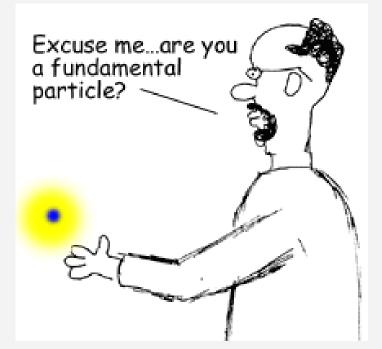
- The World of Hadrons
- 2 Puzzles: Quark Confinement and Quark Masses
- The Non-Emptiness of the Vacuum

4.) <u>Heavy-Ion Collisions and Quark-Gluon Plasma</u>


- "Evaporating" the Vacuum
- Dissolving Mass into Energy

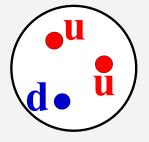
5.) <u>Summary</u>

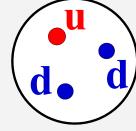
1.) The Atom and the Micro-Cosmos: Which Particles are Elementary?


- What happens if one keeps dividing matter?
- Notion of the "atom" ($\alpha \tau \circ \mu \circ \sigma$ = greek for "indivisible")

But:

Rutherford (1911):

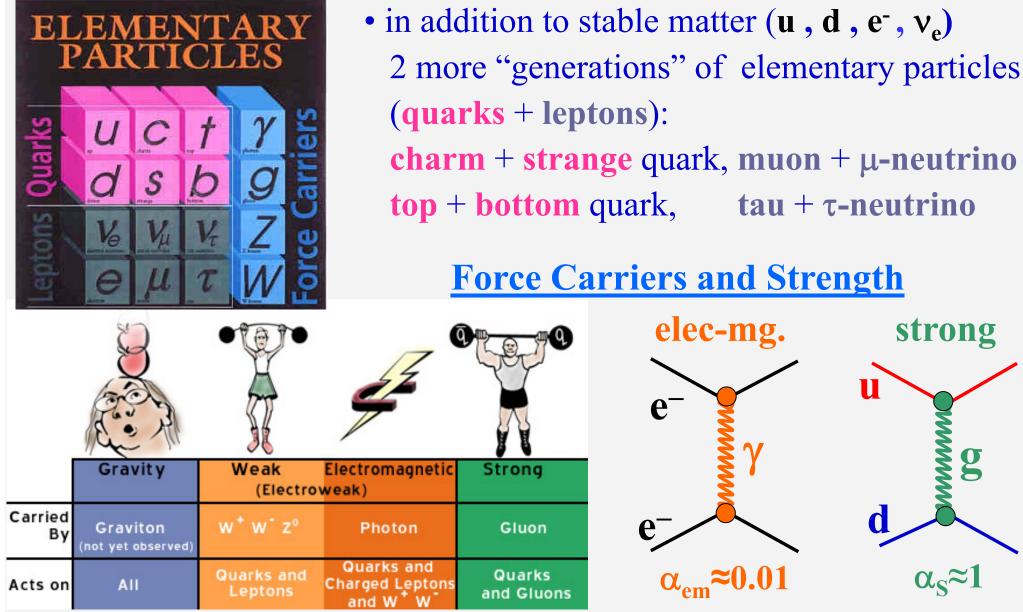

- most of the atom is "empty space"
- mass is concentrated in the atomic **nucleus**



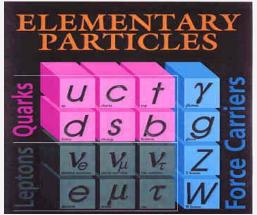
 \Rightarrow subatomic particles


<u>1.2 The Atom and the Micro-Cosmos:</u> <u>What is the World Made of?</u>

- electrons elementary, atomic **nucleus** is **NOT**
- nuclei composed of **nucleons** = **p**, **n**
- each nucleon is made of **3 quarks**:

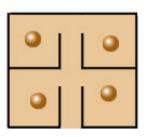


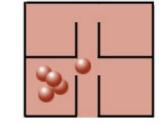
proton+ = (uud)neutron⁰ = (udd)up-quark:charge $+\frac{2}{3}$, mass $m_u \sim 3 \text{ MeV/c}^2$ down-quark: $-\frac{1}{3}$, $m_d \sim 6 \text{ MeV/c}^2$ electron:-1numbernumberelectron:electron:electron:electron:electron:electronelectron



<u>But:</u> nucleon mass m_p=m_n=940 MeV/c²

2.) Elementary Particles and Interactions What holds Matter together?




2.2 Elementary Particles and Interactions The Nature of Matter vs. Force Particles

- Matter Particles (quarks+leptons): spin S=¹/₂ "Fermions" (half-integer S)
- Force Particles (g, γ, W[±], Z): spin S=1 "Bosons" (integer S=0,1,2,...)

Fermion Motel:

only one identical fermion per room! (Pauli Exclusion Principle)

 \Rightarrow electronic shell structure of atoms

• Boson Inn:

identical bosons per room preferred! (Bose-Einstein Condensation)

Outline

1.) The Atom and the Micro-Cosmos

- Which Particles are Elementary?
- What is the World Made of?

2.) <u>Elementary Particles and Their Interactions</u>

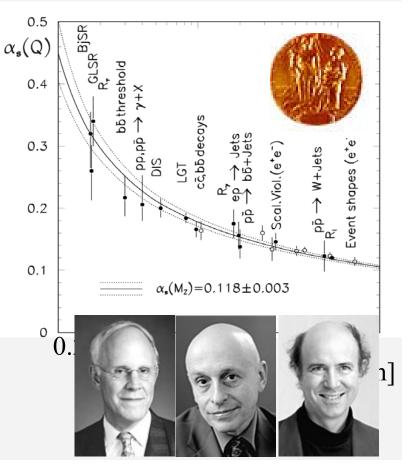
- "Matter Particles" vs. "Force Carriers"
- Fermions vs. Bosons

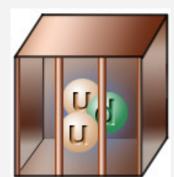
3.) <u>The Strong Interaction: Quarks and Gluons</u>

- The World of Hadrons
- 2 Puzzles: Quark Confinement and Quark Masses
- The Non-Emptiness of the Vacuum

4.) <u>Heavy-Ion Collisions and Quark-Gluon Plasma</u>

- "Evaporating" the Vacuum
- Dissolving Mass into Energy


5.) <u>Summary</u>

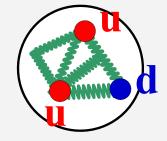

3.) The Strong Force: Quarks + Gluons The Confinement of Quarks

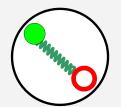
- In Nature, quarks never observed in isolation: "Confinement"
- Quarks "glued" together by gluons ("rubber" band)
 - \rightarrow the interaction strength increases with distance!!

nst

- theoretically not yet understood (recall electric force: $\mathbf{F}_{e}(\mathbf{r}) = \alpha_{em}/r^{2}$)
- "asymptotic freedom" at small distances explained \rightarrow Nobel Prize in Physics 2004 [Gross, Politzer and Wilczek]

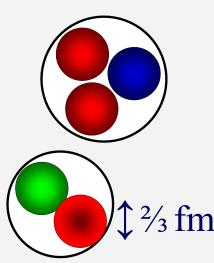
$$F_s(r) = cor$$


3.2 Strong Force: The World of Hadrons


- Quarks only appear as composites = hadrons
- two types of hadrons:
 - baryons: bound states of 3 quarks (fermions!)

e.g.: **S=1/2**: **p=(uud)**, Λ =(**uds**), ...

S=3/2: Δ^{++} =(**uuu**), Ω^{-} =(sss), ...

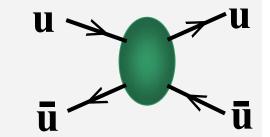

- mesons: quark-antiquark composites (bosons!) e.g.: **S=0**: $\pi^+ = (\mathbf{u}\mathbf{d}), \pi^0 = (\mathbf{u}\mathbf{\bar{u}}, \mathbf{d}\mathbf{\bar{d}}), \mathbf{K}^- = (\mathbf{s}\mathbf{\bar{u}}), \dots$ **S=1**: $\rho^+ = (\mathbf{u}\mathbf{d}), \rho^0 = (\mathbf{u}\mathbf{\bar{u}}, \mathbf{d}\mathbf{\bar{d}}), \rho^- = (\mathbf{u}\mathbf{\bar{d}}), \dots$

Puzzle: Why are hadrons so much heavier than quarks? (proton-mass = 940 MeV/c² >> 3m_q = 15 MeV/c²) Preliminary answer:

hadronic building blocks are "constituent quarks" = extended objects with mass $M_a \sim 350 \text{ MeV/c}^2$

3.3 Strong Force: Mass Generation

 $m_a \sim 5 MeV$


 The real question: how to quarks become so massive? (note: this is asking for >98% of the mass of all visible matter – a very fundamental question!!)

²⁰⁸Pb=624 quarks

Our current best (most likely) answer:

- strong quark-antiquark attraction (many gluons)
- Bose-condensation of (qq) pairs
- dense "liquid" fills the vacuum! $\langle 0 | \overline{d}d + \overline{u}u | 0 \rangle \approx 5 \text{ fm}^{-3}$
- quarks moving through the liquid have large mass (~¹/₃ of the proton mass) !!

⇒ our mass is due to a (very) dense vacuum!! Can we test this? E.g. evaporate the vacuum??

Outline

1.) The Atom and the Micro-Cosmos

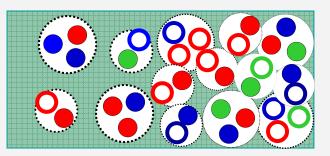
- Which Particles are Elementary?
- What is the World Made of?

2.) <u>Elementary Particles and Their Interactions</u>

- "Matter Particles" vs. "Force Carriers"
- Fermions vs. Bosons

3.) <u>The Strong Interaction: Quarks and Gluons</u>

- The World of Hadrons
- 2 Puzzles: Quark Confinement and Quark Masses
- The Non-Emptiness of the Vacuum


4.) <u>Heavy-Ion Collisions and Quark-Gluon Plasma</u>

- "Evaporating" the Vacuum
- Dissolving Mass into Energy

5.) <u>Summary</u>

4.) Heavy-Ion Collisions and Quark-Gluon Plasma Strongly Interacting Matter: From Nuclei to QGP

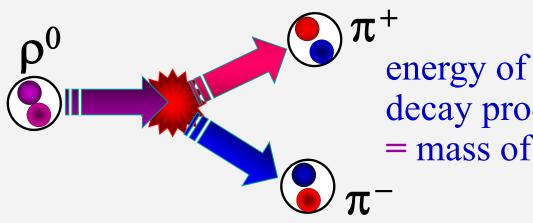


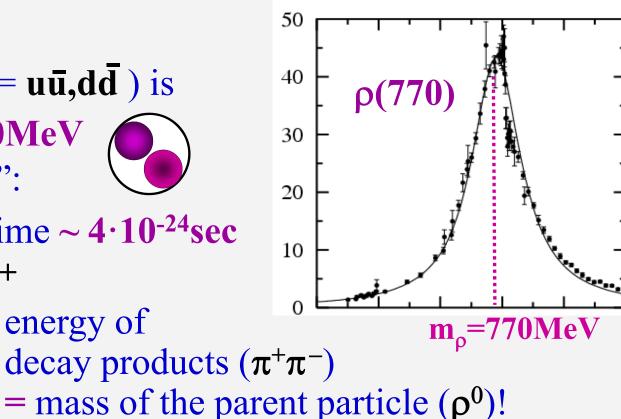
Nuclear Matter dissolves into Quark-Gluon Plasma (QGP):

- hadrons overlap, quarks liberated ⇒ Deconfinement!
- $\langle \bar{q}q \rangle$ condensate "evaporates", $M_q \rightarrow m_q \Rightarrow$ Mass dissolves!
- required temperature ~200 MeV $\approx 4 \cdot 10^{12}$ °F
- 100,000 times hotter than inside the sun!
- Early Universe ~0.00001 sec after Big Bang!!

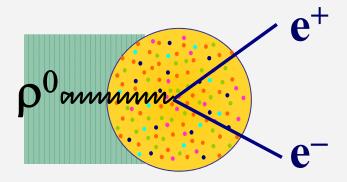
How do we pump this enormous amount of energy into the vacuum??

Answer: The Relativistic Heavy-Ion Collider!

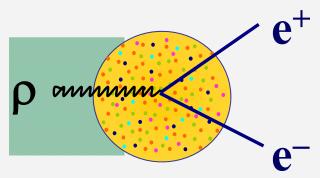

Accelerate Gold-Nuclei to **100 GeV/nucleon** and collide them! (even more powerful accelerator (**LHC**) is running at the European Center for Nuclear Research (**CERN**) in Geneva)

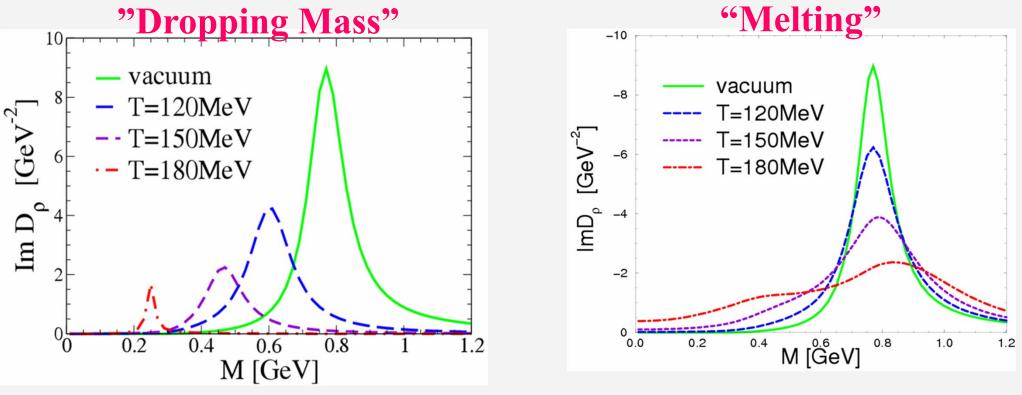

4.2 Recreating the "Little Bang" in the Laboratory e⁺ **'e**-Au + Au**QGP**?! $(\tau \approx 2 \cdot 10^{-23} \mathrm{s})$ How to look for particles inside the matter? Watch out for electron-positron decays of the $\rho(770)$ -meson! A

4.3 The p-Meson in Vacuum and its Decays


In Vacuum:

- mass of the ρ⁰-meson (= uū,dd̄) is well measured, m_ρ=770MeV
 ≈ 2 "constituent quarks":
- ρ -meson unstable, lifetime ~ $4 \cdot 10^{-24} sec$

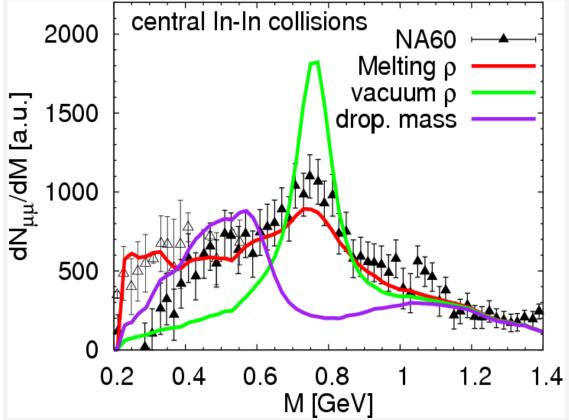

But what happens to the ρ-meson mass in a hot medium (QGP) ??

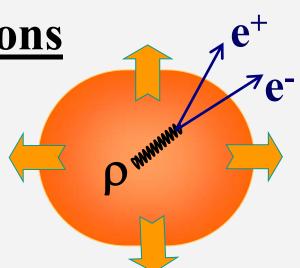


4.4 The ρ-Meson in a Hot Medium

Different theoretical predictions:

- \mathbf{m}_{ρ} "drops" to zero (quarks lose their mass)
- interactions of the ρ within the hot+dense gas: ρ -meson "melts" (broad mass distribution)


Which scenario is correct?

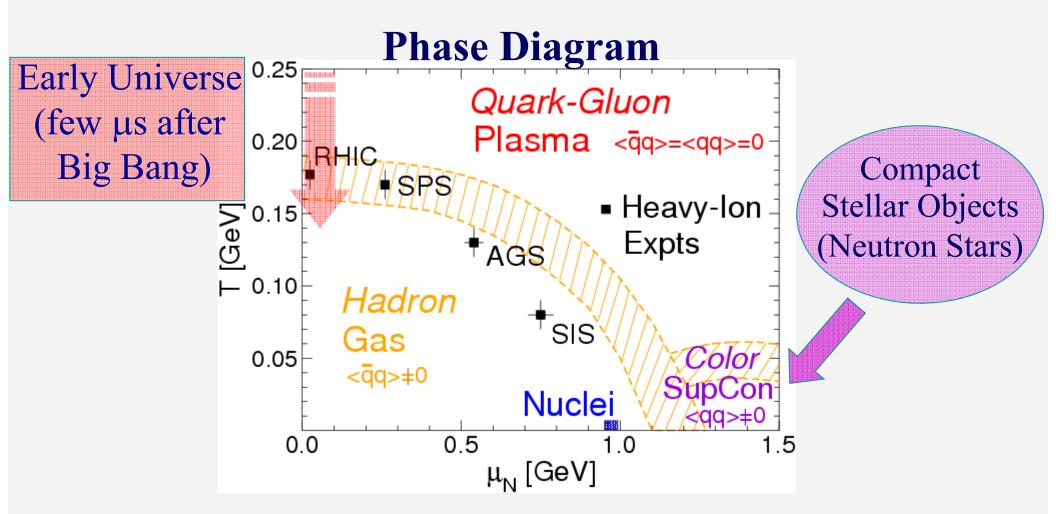

Experiments have to tell us ...

4.5 e⁺e⁻ Spectra in Nuclear Collisions

• account for $\rho \to e^+e^-$ decays over the entire "fireball" expansion history

Recent $\mu^+\mu^-$ **Data** [NA60 Experiment, CERN]

- experimental data favor the "melting" scenario
- advanced theoretical investigations required for definite conclusions ... (ongoing at Texas A&M)


We are getting close to the secret of (visible) mass in the Universe...

5.) <u>Summary</u>

- Atom → Nucleus → Nucleons → Quarks (elementary!)
- Quarks are confined to Hadrons (baryons and mesons)
 not yet understood!
- Quarks acquire a large mass within hadrons:
 - $\leftrightarrow the vacuum is a "dense liquid" of \langle \overline{q}q \rangle condensate!$
 - ⇒ more than 98% of the visible mass in the Universe!!
- Collisions of heavy nuclei at high energies:
 - → Heat the vacuum and recreate the Early Universe:
 - deconfine quarks and gluons
 - evaporate vacuum condensate and dissolve mass into energy!
 - p-meson decays to dileptons to investigate the origin of mass

very exciting research ahead ...

2.1 Hot+Dense QCD Matter in Nature

In the laboratory: high-energy collisions of heavy nuclei! Objective: to create matter at temperatures $T > T_c \approx 170 MeV$ and energy densities $\varepsilon > \varepsilon_c \approx 1 GeV fm^{-3}$